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1. Introduction

In the AdS/CFT correspondence, holographic renormalization group (RG) flows provide

the dual gravitational description of strongly coupled gauge theories, the conformal invari-

ance of which is broken either by an explicit operator deformation or by some non-zero

operator vacuum expectation value. The calculation of correlation functions in such field

theories via holographic renormalization [1 – 3] is an elegant and powerful method to ob-

tain physically interesting quantities such as the mass spectra of glueballs [4, 5] and mesons

(see [6] for a review), scattering amplitudes [7, 8], as well as hydrodynamic transport co-

efficients of the high-temperature plasma phase [9 – 11]. Holographic RG flows have been

used as gravity duals of high-Tc superconductors [12 – 15] and for constructing bottom-up

AdS/QCD models [16 – 18]. Recently, progress has also been made in non-AdS/non-CFT

cases, e.g., in the Klebanov-Strassler background [19 – 21].

The present paper deals with holographic RG flows that interpolate between an ultra-

violet (UV) and an infrared (IR) fixed point. In particular, we consider the gravity dual

of the SU(2)×U(1) Leigh-Strassler flow [22, 23] and its three-dimensional cousin [24 – 26],

which has been identified recently as an SU(3) × U(1) mass deformation of the Bagger-

Lambert theory [27 – 30]. In both cases, the holographic RG flow involves two (active)

scalar fields and is known only numerically. To our knowledge, correlation functions in
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these backgrounds have not been studied so far. We intend to approach such calculations

in the present paper by considering the two-point functions of the operators that are dual

to the active scalars. In particular, we shall calculate the (eigenvalues of) the spectral func-

tion (matrix) and confirm that the IR physics of the conformal field theory is determined

by the conformal operators living at the IR fixed point.

The following simple argument shows that the spectrum of two-point functions in any

RG flow to an IR fixed point with a gravity dual must be continuous. In AdS/CFT, the

bulk dual of a mass state is obtained by imposing two conditions on the solution of the

linearized bulk equations of motion, namely regularity in the bulk interior and absence of

the dominant asymptotic mode (implying integrability). Typically, if there are regular and

singular bulk solutions, these two conditions can be satisfied only for discrete mass values.

If the deep bulk interior is described by an AdS geometry corresponding to the IR fixed

point, the two deep bulk behaviours of a scalar field will be given by

z → ∞ : φreg ∼ z(d−1)/2 e−kLz , φsing ∼ z(d−1)/2 ekLz , (1.1)

where d is the boundary dimension, L is the IR AdS radius, and k = (k2)1/2. For generic

complex momentum k2 we choose the square root such that Re k > 0, so that the modes

are regular or singular as indicated by the subscripts. However, for k2 = −m2 one has

Re k = 0, and both modes are wildly oscillating for large z. Hence, the regularity condi-

tion cannot be imposed, and the mass spectrum will be continuous with non-normalizable

pseudo-states, as usual.

Let us now outline the rest of the paper and summarize the results. In section 2, we

start by considering a toy model for a RG flow between an UV and an IR fixed point

consisting of two patches of AdS space with different radii glued together. We choose

the masses of the scalar fields such that the bulk solutions are simple. Moreover, the UV

conformal dimension of the dual operator coincides with those in the AdS4/CFT3 flow we

study later. We verify that the spectral function exhibits the scaling behaviours in the

UV (large mass) and the IR (small mass) that one expects for the operators living at the

fixed points. In addition, we find interesting features in the spectral function such as sharp

peaks and UV oscillations, which are related to the discrete mass spectrum in the hard-wall

model. Such features have been observed and interpreted as quasinormal modes in thermal

spectral functions [31].

In section 3, we present the technical tools that we need for calculating spectral func-

tions in holographic RG flows. We start by reviewing the spectral function in many-particle

systems, continue with a review of the equations governing the bulk dynamics in holo-

graphic RG flow backgrounds and then present the numerical strategy for the calculations.

In sections 4 and 5, the SU(3) × U(1) flow in AdS4/CFT3 and the SU(2) × U(1) flow

in AdS5/CFT4 are considered, respectively. In both cases, we review the RG flow back-

grounds and present our numerical calculations of the eigenvalues of the density function.

Our results indicate that the deformed CFTs exhibit a simple cross-over behaviour from

the UV to the IR regime. In the UV regime, the CFTs behave as the undeformed ones,

while the IR behaviour is dominated by the operators that live at the IR fixed point.
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2. Toy model

Let us consider the following simple toy model consisting of two patches of (d + 1)-

dimensional AdS bulk space-time glued together at some fixed radial coordinate. We

use an AdS metric of the form

ds2 = dr2 + e2A(r) ηij dxi dxj , (2.1)

where

A(r) = r/L + A0 , (2.2)

L being the AdS length scale, and A0 an arbitrary constant. The equation of motion for a

free massive scalar field can written in the form
[(

∂r +
d + 2λ

2L

)(

∂r +
d − 2λ

2L

)

− k2 e−2A(r)

]

φ = 0 . (2.3)

The scalar’s mass m is determined by the well known relation λ =
√

d2/4 + m2L2, while the

dimension of the dual operator is, in the case of regular boundary conditions, ∆ = d/2+λ.

After introducing the dimensionless variables

k̃2 = k2L2 e−2A0 , z = e−r/L , (2.4)

(2.3) takes a standard form and has the solutions

φreg = zd/2 Kλ(k̃z) , φsing = zd/2 Iλ(k̃z) , (2.5)

where Kλ and Iλ denote modified Bessel functions. Here and henceforth, k̃ is defined as

the square root of k̃2 with −π/2 < arg k̃ ≤ π/2.

In the following, let us consider a UV region, r > 0, with parameters LUV = 1 and

A0,UV = 0, in which lives a scalar field with λUV = 1/2. This choice coincides with the UV

behaviour of the 3d RG flow that we study in section 4. For λ = 1/2, the modified Bessel

functions in (2.5) are elementary. Hence, the general solution of (2.3) becomes

φUV = z(d−1)/2
[

s cosh(kz) +
r

k
sinh(kz)

]

, (2.6)

where s and r are called the source and response coeffiencts, respectively. They determine

the connected two-point function of the dual operator by

G(k) =
r(k)

s(k)
, (2.7)

in terms of which the spectral function ρ is defined as

ρ = −2 ImG , with k2 = −m2 + i0+ . (2.8)

In the IR region, r < 0, we set LIR = l, while the continuity of the metric at r = 0

imposes A0,IR = 0. Let us choose λIR = 1/2 + n for some positive integer n, so that the
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solutions (2.5) are again elementary. Imposing the regularity condition for r → −∞ (the

deep interior) selects the solution

φIR = zd/2 Kn+1/2(klz) ∼ z(d−1)/2 e−klz
n
∑

j=0

(n + j)!

j!(n − j)!(2klz)j
. (2.9)

The overall numerical factor is irrelevant for what follows, as it drops out of (2.7).

The source and response coefficients, s and r, are determined by appropriate matching

conditions at r = 0, i.e., z = 1. From (2.3) and (2.4) follows that the matching condi-

tions are

z = 1 : φUV = φIR , −∂zφUV +
d − 1

2
φUV =

1

l

[

−∂zφIR +

(

d − 1

2
− n

)

φIR

]

. (2.10)

They give rise to

1

2

(

s +
r

k

)

ek = e−kl
n
∑

j=1

(n + j − 1)!

(j − 1)!(n − j)!(2kl)j
, (2.11)

1

2

(

s − r

k

)

e−k = e−kl



1 + n

n
∑

j=1

(n + j − 1)!

j!(n − j)!(2kl)j



 , (2.12)

so that one obtains, using (2.7),

k + G
k − G = e−2k

n
∑

j=1

(n+j−1)!
(j−1)!(n−j)!(2kl)j

1 + n
n
∑

j=1

(n+j−1)!
j!(n−j)!(2kl)j

. (2.13)

Curiously, the boundary dimension d has dropped out. Defining α by

k + G
k − G = e−2α ⇒ G

k
= − tanh α , (2.14)

and, similarly, y and β by

n
∑

j=1

(n+j−1)!
(j−1)!(n−j)!(2kl)j

1 + n
n
∑

j=1

(n+j−1)!
j!(n−j)!(2kl)j

=
1 − y

1 + y
= e−2β ⇒ y = tanh β , (2.15)

(2.13) yields

G(k) = −k
tanh k + y

1 + y tanh k
, (2.16)

where y is determined from (2.15) as

y =





n
∑

j=0

(n − 1 + j)!

(n − 1 − j)!j!(2kl)j









n
∑

j=0

(n + j)!

(n − j)!j!(2kl)j





−1

=
Kn−1/2(kl)

Kn+1/2(kl)
. (2.17)
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In the following, let us extract the UV and IR behaviours of the spectral function

and verify that they match with the spectral functions for operators of dimensions ∆UV =

(d + 1)/2 and ∆IR = (d + 1)/2 + n, respectively. In the UV, i.e., for large |k|, y is

approximately y ≈ 1 − n/(kl), such that (2.16) becomes

UV : G(k) ≈ −k +
n

l
e−2k . (2.18)

For Re k > 0, only the first term on the right hand side remains in the UV limit, which

is precisely the propagator of a ∆UV operator, as expected. In addition, the second term

gives rise to oscillations in the spectral function (2.8), which becomes

UV : ρ(m2) ≈ 2
√

m2 +
2n

l
sin(2

√
m2) . (2.19)

To obtain the IR (small m) behaviour of the spectral function, we start by insert-

ing (2.16) into (2.8),

ρ(m2) = −ik(y + y∗)
1 + | tanh k|2
|1 + y tanh k|2 , (k = im) . (2.20)

Since, on the imaginary axis, k∗ = −k, only those terms of y that are even in k contribute

to (y + y∗). To find these, let us rewrite (2.17) as

y =
kl

2n − 1

Pn−1(kl)

Pn(kl)
, (2.21)

where the polynomials Pn(x) are defined by

Pn(x) =

n
∑

j=0

(

n

j

)

(

2n

j

)

(2x)j

j!
. (2.22)

It is straightforward to show that the Pn satisfy the recursion relation

Pn(x) = Pn−1(x) +
x2

(2n − 1)(2n − 3)
Pn−2(x) (n ≥ 2) , (2.23)

while the cases n = 0 and n = 1 are simply P0(x) = 1 and P1(x) = 1 + x, respectively.

Hence,
Pn−1(x)

Pn(x)
=

1

1 + x2

(2n−1)(2n−3)
Pn−2(x)
Pn−1(x)

, (2.24)

which can be used recursively until one hits the term P0(x)/P1(x). Therefore, expand-

ing (2.24) for small x, the first odd term one encounters is the one that stems from

P0(x)/P1(x) ≈ 1 − x. Thus, one has

Pn−1(x)

Pn(x)
= even terms +

(−1)n(2n − 1)x2n−1

[(2n − 1)!!]2
+ · · · , (2.25)
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so that (2.21) leads to1

y + y∗ =
2(−1)n(kl)2n

[(2n − 1)!!]2
+ · · · . (2.26)

Finally, inserting (2.26) into (2.20) yields

IR : ρ(m2) =
2l2n(m2)n+1/2

[(2n − 1)!!]2
+ · · · . (2.27)

The power behaviour m2n+1 is expected for a dimension ∆IR = (d + 1)/2 + n operator.

Another interesting limit is l → 0, which describes the set-up of a hard-wall cut-off.

In this limit, (2.21) and (2.22) imply y = 0, so that (2.16) becomes

l = 0 : G(k) = −k tanh k . (2.28)

In this case, the non-vanishing spectral function stems from the poles of tanh k, which lie

just on the imaginary axis. Setting k = im + ε, one easily finds the discrete spectrum

l = 0 : ρ(m2) = 2πm
∞
∑

j=0

δ

(

m − 2j + 1

2
π

)

. (2.29)

In the general case, the right hand side of (2.16) has an infinite number of poles on the

left side of the k-plane, i.e., in the unphysical region Im k < 0.2 The precise locations

of the poles depend on n and l, but the limit l → 0 moves them onto the imaginary

axis. For non-zero l, though, a number of poles tend to lie very close to the imaginary

axis leading to a sharply peaked spectral function. Moreover, the UV oscillations in the

spectral function (2.19) stem from the poles in the k-plane. It is an interesting fact that

these features have also been found in the context of thermal spectral functions at finite

baryon density [31]. The results are illustrated in figure 1.

3. Spectral functions in holographic RG flows

3.1 The spectral function

The spectral representation of two-point functions is, of course, well known, but readers

might remember only the simple case of a single operator. As the general, many-particle

case will be needed later, we briefly review it in this section.

Consider the two-point correlation function between operators Oi and Oj ,

Gij(k) =

∫

ddx
〈

Oi(x)O†
j(0)

〉

eik·x , (3.1)

and its spectral representation

Gij(k) =

∞
∫

0

dm2

2π

ρij(m
2)

k2 + m2
, (3.2)

1This result can also be obtained, by similar reasoning, considering y in terms of the modified Bessel

functions [see (2.17)] and using the recursion relation Kν−1(x) − Kν+1(x) = −2ν/xKν(x).
2Poles in the physical region Re k > 0 would give rise to poles of G(k2), which in turn would be a signal

of unstable states, or resonances. The absence of such poles implies the absence of resonances.
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Figure 1: Spectral function ρ(m2) for parameters (a) n = 5, l = 4/5 and (b) n = 2, l = 1/3. The

sharp peaks are due to poles of the right hand side of (2.16) that lie in the unphysical region, but

close to the imaginary axis k = im. The first peak of every plot is actually much taller, but the

y-range has been cut off to show the other features. The UV behaviour (2.19) with oscillations is

clearly visible.

where ρij is the spectral function (matrix), often also called spectral density. For brevity,

let us suppress the operator indices in what follows and regard G(k) and ρ(m2) as matrices.

Considering complex k2, the two-point function may have poles and branch cuts along the

negative real axis corresponding, respectively, to the discrete and continuous elements of

the spectrum. The spectral function ρ is determined by the discontinuity of the correlation

function across the branch cut,

ρ(m2) = i (G+ − G−) , (3.3)

where the subscripts + and − indicate the sign of the (infinitesimal) imaginary part of

k2 = −m2+i0±. In addition, the correlation function (3.1) satisfies the analyticity property

[

G(k2)
]†

= G[(k2)∗] , (3.4)

which implies

G− = G†
+ . (3.5)

Combining (3.5) with (3.3) yields

ρ(m2) = i
(

G+ − G†
+

)

, (3.6)

which shows that ρ is a hermitian matrix with real eigenvalues. Eq. (3.6) reduces to the

well known ρ = −2 ImG+ for the case of a single operator.

3.2 Bulk dynamics

Let us start by reviewing the equations governing the dynamics of the bulk fields [32, 19],

which encode the information about two-point functions in holographic renormalization

group flows. Then, we will introduce a change of variables that further enhances the

system eliminating the need to calculate the warp factor.
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The systems we consider are of fake SUGRA type [33]3 with actions of the form

S =

∫

dd+1x
√

g

[

−1

4
R +

1

2
Gab∂µφa∂µφb + V (φ)

]

+ Sb , (3.7)

where the potential V (φ) is given in terms of a superpotential W (φ) by

V (φ) =
1

2
GabWaWb −

d

d − 1
W 2 . (3.8)

We will not specify the boundary terms Sb in (3.7), as they do not affect the bulk dy-

namics, although they are important for holographic renormalization. Our notation agrees

with [19]. In particular, field indices are covariantly lowered and raised with the sigma-

model metric Gab and its inverse, Gab, respectively; Wa = ∂aW = ∂W (φ)/∂φa; and covari-

ant derivatives with respect to the fields are indicated by Da or by a “|” preceding the index,

as in Wa|b = DbWa = ∂bWa −Gc
abWc, Gc

ba being the Christoffel symbol for the metric Gab.

Holographic renormalization group flows are described by domain wall backgrounds of

the form

ds2 = dr2 + e2A(r) ηij dxi dxj , φa = φ̄a(r) , (3.9)

which satisfy the BPS equations

∂rA = − 2

d − 1
W (φ̄) , ∂rφ̄

a = W a(φ̄) . (3.10)

Linearized fluctuations around the domain wall background are best described in a

gauge invariant fashion, in which the relevant, independent fields are the scalar fluctua-

tions a
a and the traceless transversal metric fluctuations, e

i
j. They satisfy the (linearized)

equations of motion
[(

Dr + M̃ − 2d

d − 1
W

)

(

Dr − M̃
)

+ e−2A
�

]

a = 0 (3.11)

and
[(

∂r −
2d

d − 1
W

)

∂r + e−2A
�

]

e
i
j = 0 , (3.12)

respectively. In (3.11), we have omitted the field indices, M̃ denotes the matrix

M̃a
b = W a

|b −
W aWb

W
, (3.13)

and Dr is the background covariant derivative

Dra
a = ∂ra

a + Ga
bcW

b
a

c . (3.14)

For more details, we refer the reader to the original papers [7, 32, 19].

Let us now introduce a change of variables, which facilitates the treatment of the bulk

dynamics by eliminating the warp function A(r). Introducing a new radial variable σ by

σ = A(r) , (3.15)

3The relation between supergravity and fake supergravity was analyzed in [34, 35].
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where we implicitly assume that A(r) is a monotonous function, or equivalently, that W

does not change sign along the RG flow, the BPS equations (3.10) yield simply

∂σφ̄a = −d − 1

2

W a(φ̄)

W (φ̄)
, (3.16)

and the field equations (3.11) and (3.12) become

[

(Dσ + M + d) (Dσ − M) + e−2σ (d − 1)2

4W 2
�

]

a = 0 (3.17)

and
[

(∂σ + d) ∂σ + e−2σ (d − 1)2

4W 2
�

]

e
i
j = 0 , (3.18)

respectively. In (3.17), we have

Ma
b = −d − 1

2W
M̃a

b = −d − 1

2

(

W a
|b

W
− W aWb

W 2

)

= −d − 1

2
Db

(

W a

W

)

, (3.19)

and

Dσa
a = −d − 1

2W
Dra

a = ∂σa
a + Ga

bc(∂σφ̄b)ac . (3.20)

As an aside, we observe that ∂σφ̄a is a solution to the linearized field equation (3.17).

3.3 Near boundary asymptotics and pure AdS case

To extract the CFT data from the bulk dynamics, we make use of holographic renor-

malization [1 – 3]. The near boundary behaviour (large σ) of the solutions of (3.17) is

determined by the UV fixed point, at which the matrix M is chosen diagonal with eigen-

values λi − d/2. This follows from the expansion of W around the fixed point, which for a

single scalar φ reads [2]

W (φ) = −d − 1

2L
− 1

4L
(d − 2λ) φ2 + · · · . (3.21)

The (UV) conformal dimensions of the dual operators Oi are related to the eigenvalues of

M by ∆i = d/2 + |λi|. Notice that the λi can be negative.

A generic solution of (3.17) can be decomposed as

a
a(σ) = si â

a
i (σ) + ri ǎ

a
i (σ) , (3.22)

where âi and ǎi denote the dominant and sub-dominant series solutions, which are the

duals of the CFT operators Oi of dimensions ∆i, and si and ri are the source and re-

sponse coefficients, respectively.4 The leading terms of âi and ǎi agree with the respective

counterparts in pure AdS,5

â
a
i (σ) =

1

2∆i − d
e−(d−∆i)σ δa

i + · · · , ǎ
a
i (σ) = e−∆iσ δa

i + · · · . (3.23)

4Note the change of notation with respect to [2], where the source and response coefficients were denoted

byˆand ,̌ respectively.
5In the special case ∆i = d/2, one has â = ρ e−dρ/2 + · · · .
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The somewhat unconventional normalization of the dominant solutions eliminates the pro-

portionality factor 2|λi| in the standard relation between the exact one-point function and

the response coefficients [36, 37]. The sub-leading terms in (3.23) depend on the background

and must be considered case by case.

To calculate the Green’s function, one imposes a regularity condition on a. If a has

ns components, then there are ns independent regular solutions. Hence, s and r can be

considered as ns×ns matrices, the first index labelling the regular solutions and the second

index the asymptotic (sub-)dominant ones. Then, the Green’s function (matrix) has the

elegant form

G = s
−1 · r , (3.24)

where the matrix multiplication sums over the index labelling the regular solutions.

For a scalar field in pure AdS with generic mass (λ non-integer), one has the standard

result [38]

G(k) =
Γ(−|λ|)

2Γ(1 + |λ|)

(

k

2

)2|λ|
, (3.25)

and the spectral function (3.6) is6

ρ(m) =
π

[Γ(1 + |λ|)]2
(m

2

)2|λ|
. (3.26)

3.4 Numerical strategy

The numerical strategy we employ for calculating two-point correlation functions and their

spectral functions in holographic renormalization group flows between two conformal fixed

points closely follows what one would do for an analytic calculation. The starting point

is the equation of motion (3.17), which we rewrite as a system of first-order ordinary

differential equations (ODEs),

Dσ

(

a

b

)

=

(

M I
[

d−1
2W e−σ

]2
k2 −M − d

)(

a

b

)

, (3.27)

where some auxiliary components b have been introduced, and I is a unit matrix. In this

paper, we deal with canonical scalar fields, so that the derivative is simply Dσ = ∂σ. As

we must consider complex k2 = −m2 + i0+, with some tiny imaginary part,7 we must

also treat the real and complex components of the scalars as independent, so that, for ns

(complex) scalar fields, (3.27) is a system consisting of 4ns ODEs. Hence, decomposing

each scalar field as

a →
(

Re a

Im a

)

, (3.28)

the complex momentum k becomes a 2 × 2 matrix,

k →
(

Re k − Im k

Im k Re k

)

. (3.29)

6In contrast to (3.25), formula (3.26) is valid also for integer λ.
7As we mentioned in the introduction, an IR AdS region in the bulk interior implies that Re k > 0 is a

necessary condition for distinguishing between regular and singular solutions.
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We are interested in the solutions of (3.27) that are regular in the bulk interior, i.e.,

which behave as φreg in (1.1) to leading order. However, using the exponential damping to

impose this behaviour is not practical, because Re k is tiny, and the bulk solution typically

undergoes wild fluctuations in the region dominated by the z(d−1)/2 factor before reaching

the physically interesting domain wall. Thus, it is better to define the fields

a
′ = ekLIR(e−σ − e−σ0)

a , b
′ = ekLIR(e−σ − e−σ0)

b , (3.30)

which satisfy the field equation

Dσ

(

a
′

b
′

)

=

(

M − kLIR e−σ
I

[

d−1
2W e−σ

]2
k2 −M − d − kLIR e−σ

)(

a
′

b
′

)

. (3.31)

We numerically integrate (3.31) for σ < σ0 and then continue with (3.27) for σ > σ0, with

σ0 chosen in vicinity of the domain wall. The initial condition that we impose in the IR

can be determined from the leading and next-to leading behaviour of a
′, which is

σ → −∞ : a
′ = e−

d−1

2
σ (1 + γ eσ + · · · ) a

′
0 , (3.32)

where a
′
0 is a constant field vector, and the matrix γ is determined from (3.31) as

γ =
k∗

2LIR|k|2
[

d2 − 1

4
+ DσM + (M + d)M

]

. (3.33)

There are 2ns independent initial conditions, which give rise to 2ns independent regular so-

lutions. The field redefinitions (3.30) have been chosen such that the vector (a′ b′) matches

smoothly with (a b) at σ = σ0, but omitting the term containing σ0 would just amount to

a multiplication by an irrelevant (complex) normalization factor.

In the UV region, the source and response coefficients, s and r, respectively, can be

extracted from the numerical solutions by using the decomposition (3.22) into dominant

and sub-dominant terms. Then, the Green’s function is obtained from (3.24) as a 2ns×2ns

matrix consisting of ns × ns blocks of 2 × 2 matrices of the form

(

ReGij ImGij

− ImGij ReGij

)

.

Finally, (3.6) yields the spectral function (matrix) ρ, the eigenvalues of which are then cal-

culated.

To test the numerical strategy described above, we have numerically calculated the

spectral density for the toy model studied in section 2. In particular, we have considered

the parameters d = 3, LIR = 0.8 and n = 2, i.e., the scalar in the IR region is dual to an

operator of dimension ∆IR = 4. The integration range was chosen as −4 ≤ r ≤ 8, and the

IR and UV regions are glued together at r = 0.

The exact solution for the spectral function is given by (2.8) and (2.16). The results

are depicted in figure 2, and the agreement between the exact and the numerical solutions

is evident.
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Figure 2: Spectral density of the toy model with parameters d = 3, LIR = 0.8, n = 2. The

numerical solution (points) agrees with the exact solution (line).

4. SU(3) × U(1) RG flow in d = 3

4.1 Fixed points and background solution

We wish to study the case of the SU(3) × U(1) invariant RG flow in AdS4/CFT3. The

N = 2 domain wall solution in N = 8, 4-dimensional gauged SUGRA was found in [24, 25]

and lifted to M-theory in [26].

The fake SUGRA system describing the flow contains two scalar fields, ρ and χ, with

the sigma model metric

Gρρ = 12ρ−2 , Gχχ = 1 , Gχρ = 0 (4.1)

and the superpotential8

W = − 3

8ρ2
[cosh(2χ) + 1] +

1

8
ρ6 [cosh(2χ) − 3] . (4.2)

It will be helpful to introduce also a canonical basis (α,χ) of scalars by defining

ρ = e
α

2
√

3 . (4.3)

The background equations (3.16) read

∂σρ = − ρ

16W

[

1

ρ2
(cosh(2χ) + 1) + ρ6(cosh(2χ) − 3)

]

,

∂σχ = − 1

4W

(

ρ6 − 3

ρ2

)

sinh(2χ) .

(4.4)

The fixed points we are interested in are the (attractive) UV fixed point at ρ = 1 (α = 0),

χ = 0 and the IR fixed point at ρ8 = 3, cosh(2χ) = 2. (Notice that ρ is assumed positive,

8We have adopted the expressions of [24 – 26] to the conventions of section 3.2 and set the length scale

of the asymptotic AdS region in the UV to unity.
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Figure 3: (a) Contour plot of W (ρ, χ) with the solution of (4.4) connecting the UV and IR fixed

points. (b) Plot of W vs. σ along the flow. (c,d) Plots of the scalar fields vs. σ.

and amongst the two equivalent IR fixed points we pick the one with positive χ.) The

solution of (4.4), which interpolates between the fixed points, can be found numerically

and is illustrated in figure 3. For numerical stability, one sets the initial conditions for the

field values very close to the IR fixed point, and the dynamics of (4.4) lets the solution flow

to the UV fixed point with increasing σ. This numerical solution will serve as the domain

wall background in the numerical treatment of the fluctuations, which follows.

Before continuing, we would like to make some comments on the integration constants

for (4.4).9 For large values of σ, i.e., in the UV region, the scalar fields approach their

respective UV fixed point values as

large σ : α(σ) ≈ α̂ e−σ , χ(σ) ≈ χ̂ e−σ , (4.5)

with two coefficients α̂ and χ̂. However, only their ratio, or equivalently, an angle in field

space, determines the direction of the flow. For the flow starting at the IR fixed point, the

numerical solution yields
α̂

χ̂
≈ 0.6529 . (4.6)

A possible common factor can be absorbed by a shift of the radial variable σ → σ′ = σ+δσ.

Let us now consider the dimensions of the dual operators at the fixed points. This

was done in [24], but we shall rederive them here for completeness. The dimensions of the

9A similar discussion for the flow in AdS5/CFT4 can be found in [22] and in section 5.1.
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operators dual to the scalars α and χ are determined by expanding W about a fixed point

to quadratic order. At the UV fixed point, one finds

W = −
(

1 +
1

2
α2 +

1

2
χ2

)

+ · · · . (4.7)

Comparing this to the generic formula (3.21), we find that the scalars α and χ correspond

to a doublet of relevant operators of dimension ∆ = 2.

For the IR fixed point we introduce

α = αIR + α̃ , χ = χIR + χ̃ , (4.8)

where αIR and χIR are the respective field values at the fixed point. Expanding W to

quadratic order yields

W = − 1

LIR

(

1 +
1

2
α̃2 − 2α̃χ̃

)

+ · · · , (4.9)

with LIR = 2 · 3−3/4. Rotating the fields by

(

α̃′

χ̃′

)

=

(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)(

α̃

χ̃

)

, (4.10)

where

cos ϕ =

[

1

2

(

1 +
1√
17

)]1/2

, sin ϕ =

[

1

2

(

1 − 1√
17

)]1/2

, (4.11)

one brings the quadratic terms in (4.9) into diagonal form and obtains

λα̃′ = 1 − 1

2

√
17 , λχ̃′ = 1 +

1

2

√
17 . (4.12)

Hence, the dual operators Oα̃′ and Oχ̃′ have dimensions

∆α̃′ =
1

2

(

1 +
√

17
)

, ∆χ̃′ =
1

2

(

5 +
√

17
)

. (4.13)

From the monotonicity relation ∂rW = WaW
a ≥ 0, which stems from (3.10), follows that

the flow approaches the IR fixed point along the χ̃′ direction, and the irrelevant operator

Oχ̃′ controls the RG flow in the field theory [22].

4.2 Spectral functions

Here, we present our numerical results for the spectral functions of the two-point correlators

for the doublet of operators Oα and Oχ, which have UV conformal dimensions ∆α = ∆χ =

2. As shown above, the renormalization group flow lifts the degeneracy of the dimensions

and ends at the IR fixed point with two operators Oα̃′ and Oχ̃′ , the dimensions of which

are given by (4.13). From the eigenvalues of the spectral function matrix, we shall be

able to identify clearly the cross-over from the UV to the IR. Furthermore, we shall look

for evidence of UV oscillations in the spectral functions, as in the toy model, but find no

evidence of them.
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Figure 4: Log-log plots of the spectral function eigenvalues ρ1 (a) and ρ2 (b) vs. m. The straight

lines correspond to the expected IR and UV behaviours. The UV lines are given by ρ = 2m, while

the IR lines are (a) ρ1 = 3.83 m2.12 and (b) ρ2 = 2.8 m6.12.

The system of field equations (3.27), which we have to solve numerically, contains in

a the linearized fluctuations of the scalars α and χ. As the kinetic term for these scalars is

canonical, we have simply Dσ = ∂σ . Furthermore, the matrix M takes the form

M =
1

W 2

(

ρ4

4 [cosh(2χ)−3][cosh(2χ)+1]
√

3
2 ρ4 sinh(2χ)√

3
2 ρ4 sinh(2χ) 1

16ρ4 (ρ8−3)
[

3(ρ8+1) cosh(2χ)−ρ8 + 3
]

)

,

(4.14)

where the superpotential W is given by (4.2), ρ = eα/(2
√

3), and the fields are evaluated on

the (σ-dependent) background. As explained in section 3.4, we use (3.31) in the IR region

for numerical stability choosing σ0 = 0.

The results for the eigenvalues of the spectral function matrix are shown in figure 4

and exhibit the following features. For large m, both eigenvalues show the expected UV

behaviour (3.26) with λ = 1/2, i.e., ρ = 2m, without any sign of oscillations. (We have

checked also for higher values of m than those shown in the figure.) For small m, a fit of

the log of the larger eigenvalue vs. ln m yields the formula ln ρ1 ≈ 2.12 ln m + 1.34, and the

coefficient of ln m agrees nicely with the expected value for the operator Oα̃′ ,

2∆α̃′ − 3 =
√

17 − 2 ≈ 2.12 . (4.15)

A similar fit for the smaller eigenvalue in the IR region yields ln ρ2 ≈ 6.17 ln m+1.21. The

slight disagreement of the slope from the expected value, which is 6.12, is due to the larger

numerical error for ρ2.
10

The results for the spectral functions indicate that the deformed CFT exhibits a simple

cross-over behaviour under the RG flow, with a cross-over point m = Λc. For m > Λc,

its dynamics is governed by the undeformed N = 8 CFT, whereas for m < Λc the IR

conformal phase takes over. The numerical value of Λc is subject to shifts of the radial

variable σ → σ′ = σ + δσ, which just amounts to choosing a momentum scale.

10The smaller eigenvalue ρ2, which is several orders of magnitude smaller than ρ1 in the region of interest,

is calculated as the difference of two numbers of the order of ρ1.
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5. SU(2) × U(1) RG flow in d = 4

5.1 Fixed points and background solution

This RG flow was discussed extensivley in [22]. Here, we will give a brief review for

completeness.

The fake SUGRA system describing the RG flow contains two scalar fields, ρ and χ,

with the sigma model metric

Gρρ = 6ρ−2 , Gχχ = 1 , Gχρ = 0 (5.1)

and the superpotential

W = − 1

2ρ2
[cosh(2χ) + 1] +

1

4
ρ4 [cosh(2χ) − 3] . (5.2)

A canonical basis of scalars β, χ is achieved by introducing11

ρ = e
β√
6 . (5.3)

The background equations (3.16) read

∂σρ = − ρ

4W

[

1

ρ2
(cosh(2χ) + 1) + ρ4(cosh(2χ) − 3)

]

,

∂σχ = − 3

4W

(

ρ4 − 2

ρ2

)

sinh(2χ) .

(5.4)

The fixed points we are interested in are the (attractive) UV fixed point at ρ = 1 (β = 0),

χ = 0 and the IR fixed point at ρ6 = 2, cosh(2χ) = 5/3. The numerical solution of (5.4),

which interpolates between the fixed points, is illustrated in figure 5. This numerical solu-

tion will serve as the domain wall background in the numerical treatment of the fluctuations,

which follows.

The background behaviour of the fields near the UV fixed point is

large σ : χ(r) ≈ χ̂ e−σ , β(r) ≈ β̂ e−2σ +

√

8

3
χ̂2σ e−2σ , (5.5)

with two coefficients β̂ and χ̂. The combination of them, which is invariant under a shift

of the radial variable, σ → σ′ = σ + δσ, is

β̂

χ̂2
+

√

8

3
ln χ̂ ≈ −1.469(6) , (5.6)

which agrees with the result of [22].

Let us rederive the dimensions of the dual operators at the fixed points. At the UV

fixed point, one finds

W = −
(

3

2
+ β2 +

1

2
χ2

)

+ · · · . (5.7)

11In the notation of [22], β = ϕ3, χ = ϕ1.
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Figure 5: (a) Contour plot of W (ρ, χ) with the solution of (5.4) connecting the UV and IR fixed

points. (b) Plot of W vs. σ along the flow. (c,d) Plots of the scalar fields vs. σ.

Comparing this to the generic formula (3.21), we find that the scalars β and χ correspond

to relevant operators of dimensions ∆β = 2 and ∆χ = 3, respectively.

For the IR fixed point we introduce

β = βIR + β̃ , χ = χIR + χ̃ , (5.8)

where βIR and χIR are the respective field values at the fixed point. Expanding W to

quadratic order yields

W =
1

LIR

(

−3

2
+

√
6β̃χ̃ − β̃2

)

+ · · · , (5.9)

with LIR = 3 · 2−5/3. Rotating the fields by
(

β̃′

χ̃′

)

=

(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)(

β̃

χ̃

)

, (5.10)

where

cos ϕ =

[

1

2

(

1 +
1√
7

)]1/2

, sin ϕ =

[

1

2

(

1 − 1√
7

)]1/2

, (5.11)

one brings the quadratic terms in (5.9) into diagonal form and obtains

λβ̃′ = 1 −
√

7 , λχ̃′ = 1 +
√

7 . (5.12)
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Hence, the dual operators Oβ̃′ and Oχ̃′ have dimensions

∆β̃′ = 1 +
√

7 , ∆χ̃′ = 3 +
√

7 . (5.13)

The background approaches the IR fixed point along the χ̃′ direction, and the irrelevant

operator Oχ̃′ controls the RG flow in the field theory.

5.2 Spectral functions

Here, we present our numerical results for the spectral functions of the two-point corre-

lators for the operators Oβ and Oχ, which have UV conformal dimensions ∆β = 2 and

∆χ = 3, respectively. As shown above, the renormalization group flow ends at the IR fixed

point with two operators Oβ̃′ and Oχ̃′ , the dimensions of which are given by (5.13). As in

the AdS4/CFT3 case, the spectra show a cross-over behaviour along the flow and no signs

of oscillations.

The system of field equations (3.27), which we have to solve numerically, contains in

a the linearized fluctuations of the scalars β and χ. As the kinetic term for these scalars is

canonical, we have simply Dσ = ∂σ . Furthermore, the matrix M takes the form

M =
3

2W 2

(

3ρ2

4 [cosh(2χ) − 3][cosh(2χ) + 1]
√

6ρ2 sinh(2χ)√
6ρ2 sinh(2χ) 1

4ρ4 (ρ6 − 2)
[

(3ρ6 + 2) cosh(2χ) − ρ6 + 2
]

)

,

(5.14)

where the superpotential W is given by (5.2), ρ = eβ/
√

6, and the fields are evaluated on

the (σ-dependent) background.

The results for the eigenvalues of the spectral function matrix are shown in figure 6

and exhibit a clear cross-over behaviour from the UV to the IR. For large m, the spectral

functions exhibit the expected UV behaviour (3.26) for operators of dimensions ∆β = 2

and ∆χ = 3,

ρ1 = ρβ ≈ π , ρ2 = ρχ =
π

4
m2 , (5.15)

respectively. Again, there is no sign of oscillations.

For small m, a fit of ln ρ vs. ln m yields the relations ρ1 ≈ 3.5 ln m + 4.3 and ρ2 ≈
7.6 ln m + 3.5, while the values expected for the slopes are, respectively,

2(
√

7 − 1) ≈ 3.29 , 2(
√

7 + 1) ≈ 7.29 , (5.16)

as one obtains from the IR dimensions (5.13). We suspect that the slight disagreement

stems from numerical issues, but this question deserves further investigation. We just note

that, with a numerical accuracy of the integration routine of about 10−6, it is impossible

to calculate the eigenvalues for lower m. At m = 0.08, the eigenvalues differ already by

five orders of magnitude.
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Figure 6: (a) and (b) log-log plots of the spectral function eigenvalues ρ1 and ρ2 vs. m, respec-
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